ATC-10B/Fixed Point C Source
Code Report

Prepared by CIE Engineering, Inc. (02/28/2003)
FA100-00099

Abstract: This report describes the early testing and evaluation results
for the ATC-10B/Fixed Point C Source Code provided by Digital Voice
Systems, Inc. (DVSI) to the Federal Aviation Administration (FAA). A
general description of the distribution is provided. Results of source
code compilation for the ADSP-2188M and Intel x86 platforms are
provided (including execution performance). Bit stream compatibility
tests were conducted between the C-source code (fixed point
implementation) and the VC-20 hardware platform (floating point
implementation). Conclusions are provided at the end of this report.

ATC-10B/C Source Code Overview

Digital Voice Systems, Inc. (DVSI) (Burlington, MA) provided C Source
Code to the Federal Aviation Administration for the fixed-point
implementation of the ATC-10B voice compression algorithm.

Distribution Contents
The ATC-10B/C Source Code distribution contains:

= Documentation: A directory includes an algorithm description and a
software overview description.

= ATC-10B Source Code: The voice encoder/decoder (vocoder)
source code.

= Sample Application: A sample PC application is provided that
works with file input/output and illustrates how to interface with
the vocoder source code.

= Test Vectors: Sample linear and compressed voice files are
provided.

The vocoder source code is supplied in 76 different C source files (*.c)
and 135 C header files (*.h). The input/output source code is supplied
in 10 different C source files (*.c) and 21 C header files (*.h). The
input/output source code works with PC-based files (see “Test Vector

Files” below).
I _ W CIE anesmeonc
AIRIGROUND 7>

ACB-560 Pa.ge 1

The distribution isolates the vocoder code from the sample
input/output code. This structure facilitates integration by allowing
modifications to be made only to the input/output code without
affecting the vocoder code.

SPECIAL CAPABILITIES

The distribution supports soft-decision detection using up to 4-bits to
represent each compressed channel bit. With 4-bit soft-decision, a 0x0
(hexadecimal) represents a confident ‘0’ compressed channel bit and a
OxF (hexadecimal) represents a confident ‘1’ compressed channel bit.

The distribution sample application supports bit error rate modeling.
Noise can be added to the channel bits to ‘simulate’ RF channel
degradation. Available models include ‘ideal’, ‘gauss’, ‘rician’, and
‘markov’. At least six bit error rate levels are available for each model.

TEST VECTOR FILES

The distribution input/output test vectors are supplied as PC-based
files. The distribution includes three types of vectors.

= Raw PCM Linear Voice (*.DAT): These binary files contain raw 16-
bit linear data streams with no headers or special formatting.
These files serve as input vectors for the ATC-10B vocoder. A
number of multiple speaker files are provided.

= ATC-10B Compressed Voice (*.BIT): These binary files contain
compressed voice with each byte containing one bit stored in soft
decision format (4-bits per channel bit).

= Synthesized PCM Linear Voice (*.SYN): These binary files contain
16-bit linear data streams that have been processed by the ATC-
10B decoder.

PROCESSING STRUCTURE

The algorithm produces 96 compressed voice bits for every 20
milliseconds of linear voice data sampled at 8000 samples/second (16-
bits/sample). The 20-millisecond data window is called a frame. The
encoder processes a frame in two pieces to reduce overall delay, i.e.,
two 10-millisecond subframes. Forward error correction (FEC) is added
to create the 96-bit encoded frame. The decoder is similarly structured
using subframe processing after the FEC decoder.

AIR/GROUND

COMMUNICATIONS

I _ W CIE anesmeonc
wn

Page 2

SOURCE CODE APPROACH

The ATC-10B/C Source Code approach uses C routines to implement
16-bit fixed point processing. In addition to standard DSP functions
(e.g. FFT), it also uses C routines to mimic DSP computational units
such as the DSP accumulator, multiplier/accumulator, and shifter
computational units. Some proprietary functions are implemented
using these computational unit emulation functions. This approach
may support traceability between C and optimized assembly
implementations of the ATC-10B algorithm. At the very least, it
facilitates easy translation of C routines to DSP-specific assembly
routines.

Ié _ W CIE oneemen

AIR/GROUND

COMMUNICATIONS
ACB-560

Page 3

ADSP-2188M Processor Implementation

ADSP-2188M
DESCRIPTION

The ADSP-2188M is a 16-bit fixed
point DSP with arithmetic logic unit,
multiplier/accumulator unit (40-bit),
and barrel shifter unit. It executes
instructions at a rate up to 75
million instructions/second (MIPS).
The DSP maintains separate
program memory (24-bit wide) and
data memory (16-bit) spaces. The
ADSP-2188M includes 48K words of
on-board program memory and 56K
words of on-board data memory
(organized into 8K pages).

VISUAL DSP
DESCRIPTION

Visual DSP 2.0 (VDSP) is an
integrated development
environment (IDE) tool used to
build and manage C/assembly
based programs for the ADSP-
2188M. VDSP also includes a
simulator that can be used to
measure/determine code execution

time.

CIE Engineering compiled and linked the ATC-10B vocoder code to
execute on an Analog Devices ADSP-2188M digital signal processor
(DSP). The input/output sample code was not used. CIE also
conducted simulations to measure the execution performance of the
algorithm on the DSP.

Note: The NEXCOM Prototype RIU, developed by CIE for the FAA, uses
the ADSP-2188M DSP processor.

Code Compilation (ADSP-2188M)

Initially, CIE Engineering compiled (but did not link) the ATC-10B Fixed
Point C Source for the ADSP-2188M. The total code size for the
vocoder was over 60 kwords of program memory. This is 12 kwords
more than what is available on-board. In addition, this total does not
include the required input/output code or program core code. The core
code includes interrupt handlers, overlay handlers (used for paged
memory management) and serial port drivers (for maintenance/debug
port).

Due to the large program size, CIE Engineering separated the code into
two pieces to run a dual DSP processor configuration. The encoder
was placed in one DSP and the decoder was placed in the other DSP.
This approach was minimally successful in that the ATC-10B vocoder
code was successfully linked. However, the remaining memory was
not sufficient to support the vocoder input/output or core functions.

The ADSP-2188M Compiler reported a few warnings and errors. All
warnings and errors were extremely minor (e.g., missing new line at
end of file) except for errors resulting from the use of the ‘long long’
type variables. The ADSP-2188M Compiler does not support this (or
any other) 64-bit data type. Fortunately, the use of this type is limited
to one file within the ATC-10B source code. The 64-bit type was used
to implement 40-bit DSP math. These functions can be translated into
ADSP-2188M assembly to take advantage of the processor’'s 40-bit
multiplier/accumulator (MAC).

Note: For the purposes of obtaining initial memory and execution
performance profiles, the problematic sections of code were
commented out.

AIR/GROUND

COMMUNICATIONS

ACB-560

I _ W CIE anesmeonc
wn

Page 4

- Memory Profile (ADSP-2188M)

57344

rrrrrrr This section provides detailed ADSP-2188M program and data memory

o - o usage requirements for the ATC-10B vocoder. The profile is based on
— - a dual processor configuration. The encoder program is executed on
40950 {—— — one DSP and the decoder program is executed on another. While the

data memory requirements for both programs are minimal, the
77777777777777 program memory requirements are relatively large (especially for the
e - i decoder).

PROGRAM MEMORY

39768 47600 |

WORDS

16384 — —

Figure 1 presents the program memory utilization requirements for the

8192 +—| —

| 10000 10000 | encoder and decoder programs. The encoder requires 41.3 kwords.
Y i I s i N it The decoder requires 47.6 kwords.
ENCODER DECODER
| OVOCODER | (DSP 1) (DSP #2) An estimated 10.0 kwords is required to support voice input/output and
g core program functions. Voice input/output functions include DSP
Figure 1. Program Memory Profile SPORT bus driver and queue routines. Core program functions include
(ADSP-2188M). Even a dual processor an interrupt handler, queues, RS-232 serial port driver, overlay
configuration requires more than the manager (for memory page management), and a minimal command

available 48K of on-board memory. line processor

st \ DATA MEMORY

e

Figure 2 presents the data memory utilization requirements for the
encoder and decoder programs. The data memory requirements are
49152 minimal when compared to the program memory requirements. The
encoder requires 8.1 kwords (or 14%) of data memory. The decoder
requires 7.8 kwords (or 14%) words d data memory. The voice

57344

40960

%’32768 input/output and core program functions require an estimated 8.2
= kwords of data memory.
24576
16384
| oo —
glo] T
- -
v
_ ENCODER DECODER
OVOCODER | (DSP #1) (DSP #2)

OCORE &0

Figure 2. Data Memory Profile
(ADSP-2188M). The data memory
requirements are minimal. The 56K of
on-board data memory is not fully
utilized.

I _ W CIE anesmeonc
wn

AIR/GROUND

COMMUNICATIONS

ACB-560 Page 5

700
600 —
500 —
...... 495 e
400 ——|
)
o J SO Y N AN
< I PO R N O
]
]
R S S
s R SO N NN SO
£ 300 —
200 — —
77777777777777777 109 |77
100+— 195 I
___________________ M2 |
0 4 d
osuerrame #2. ENCODER DECODER
Efé'caFRAME *. (DSP #1) (DSP #2)

Figure 3. Execution Profile (ADSP-
2188M). Both encoder and decoder
execution profiles exceed the 20 ms limit
by orders of magnitude. The encoder
requires a 35:1 improvement and the
decoder requires a 12:1 improvement.

Execution Profile (ADSP-2188M)

CIE Engineering simulated the execution time of the encoder and
decoder software using Visual DSP.

RESULTS

Figure 3 presents the execution time profiles for the encoder and
decoder. With a 13.5 ns instruction period, the encoder required 692
ms to compress 20 ms of linear audio. The decoder required 230 ms
to generate 20 ms of linear audio. Clearly, the C source code cannot
run in real time on this DSP.

Note: These results do not include execution time for input/output or
core program functions.

POTENTIAL OPTIMIZATION

The source code was examined to determine if key DSP-related
routines could be optimized to allow the algorithm to run within the
time available, i.e. 20 ms. There are identifiable DSP routines, such as
FFT and DFT routines, that require large execution times when
implemented as C routines.

For example, in the first encoder subframe (195 ms execution time), a
single DFT routine executes multiple times and requires an aggregate
execution time of 135 ms. If the routine were replaced with an ADSP-
2188M assembly routine, the estimated aggregate execution time
would be less than 1 ms. Notwithstanding, the remaining functions in
this subframe still require 60 ms to execute and the processing time is
distributed across many functions. Many, if not all, of these functions
would need to be converted to assembly routines.

The optimization issue for te second subframe (495 ms execution
time) is much worse than the first subframe.

The code cannot be reasonably optimized to run in the time allotted
without eliminating much, if not all, of the C source code.

AIR/GROUND

COMMUNICATIONS
ACB-560

I _ W CIE anesmeonc
wn

Page 6

Pentium Processor Implementation

CIE Engineering compiled the sample application (with the vocoder
source code) to execute on a standard Pentium computer. Microsoft

Visual Studio 6.0 was used to compile and link the code.

Code Compilation

CIE successfully compiled and linked the sample application which
includes the ATC-10B vocoder source code.

Execution Profile

A small C timing utility was written to measure the execution time of
the encode/decode functions using the ATC-10B sample application.

The utility also counted the data samples

in the

linear

voice

input/output files and displayed the corresponding 1X playback time.

Figure 4 shows execution performance for seven different computers.
The input test vector (linear audio) contained 73.984 seconds of voice
sampled at 8 kHz (refer to the bold line in the figure).

160
140 3553
120 31,2
100
=, S TN R 23754 |) L
5 a0
L)
R e e e P M A e e G e — A S T
&0 121.77
.. 1301 |- e 02 [
A 10194 79.975
""""""""""""""" 7781 11T
£ 753
20 41,74
,,,,,, 20449 |------fooo---| 23857 |l SLTE . —
0
CPU #1 CPU #2 CPU #3 CPU #4 CPU #5 CPU #6 CPU #7
Pentium 4 Pentium 4 Pentium 4 Pentium 3 Pentium Celeron Pentium Pro
gg;gggg at 2.0GHz at 1.8GHz at 1.3GHz at 1.0GHz at 500MHz at 400MHz at 333MHz
(XP Pro} (XP Home) (Win 2K) (Win 98) (Win 2K) (Win 98) (Win 95)

Figure 4. Pentium Machine Execution Profile. The encoder requires roughly 3 times more time to execute than the decoder.

e

AIR/GROUND

COMMUNICATIONS

ACB-560

w CHEENGINEERING INC.
wn

Page 7

AIR/GROUND

COMMUNICATIONS
ACB-560

The sample application enables the encoder and decoder to be
executed separately. The sample application does include file
input/output operations. These operations were judged to add an
insignificant amount of time to the total execution time. The bit error
rate models were not used.

The timing tests were run a few times on each machine. The timing
results were fairly consistent, varying by less than 2%. Figure 5 shows
that execution time is proportional to processor speed. The error in
predicted performance using the linearity was less than 4%. Given
these results, a Pentium running at a minimum of 750-800 MHz is
required to run the algorithm in real-time.

A few different voice sample files were also tested. Execution times
varied only slightly for those files tested. For example, a silence voice
file (all zeros for 74 seconds) was applied to CPU #3. The execution
time for encoder and decoder was 40.728 seconds versus the 41.919
seconds for active voice content (a difference of less than 3%).

Note: Although no other primary applications were executing on any
of the machines, no special efforts were made to stop the execution of
operating system services or background applications automatically
started on power up.

7 5,

Execution Time vs. CPU Speed

200

180

160

140 //
L 12
i -
Z @ A
= o
{ e -
. et

s
(=]

/

0 0.5 1 1.5 2 2.5 3 3.5
CPU CLOCK PERICD (ns)

\

[=]

A

Figure 5. Execution Time vs CPU Speed. The execution time is proportional to CPU
speed. A 750-800 MHz machine is required to run the algorithm in real time.

I _ W CIE anesmeonc
wn

Page 8

VC-20 Compatibility

CIE conducted bit-stream compatibility testing between the 16-bit fixed
point ATC-10B/C Source Code and the floating point VC-20 hardware.

The CIE-designed Vocoder Development Support Tool (VDST) platform
was used to provide VC-20 functionality. The VDST includes an
integral VC-20 board and supports compressed voice capture/playback
capabilities over a host serial port.

Test Setup

Figure 6 presents the test setup used to verify VC-20 compatibility.
The test objective was to transfer voice in both directions (VC-20® C-
SOURCE and C-SOURCE® VC-20).

-~

-
X %
\

ATC-10B
VC-20 ! C Source Code
Floating Point [Fixed Point

1

1

VDST
(VC-20)
[floating pt]

ATC-10B \

VDFZBIT

3 ATC-10B)
| —> C Source QQ%E@E
*.BIT Tfixed pt] P
BIT2VDF |«— j
& ?

Figure 6. VC20/C Source Code Compatibility Test. The CIE VDST and a personal computer were used
to test compatibility between the VC-20 and the Fixed Point C Source Code. Translation software was written
to convert VDST compressed voice files (*.VDF) to DVSI compressed voice files (*.BIT).

TEST #1: VC-20® C-SOURCE

For the first test, an air traffic voice sample track was played (using a
CD player) through the VDST. The VDST was configured to send the
compressed voice stream (generated by the internal VC20) out to the
VDST host serial port. HyperTerminal (a terminal emulation software
package) was used to capture the ASCII bit stream to a file. The VDST
user manual describes the compressed voice ASCII format

AIR/GROUND

COMMUNICATIONS

ACB-560

Ié _ W CIE oneemen
wn

Page 9

AIR/GROUND

COMMUNICATIONS
ACB-560

A file format translation utility, VDF2BIT, was written to convert the
VDST compressed voice file format (*.VDF) into the DVSI compressed
voice file format (*.BIT). Hard decision bit encoding was used. Note:
Although the VC-20 software can internally support soft decision, the
VC-20 hardware interface specification limits the compressed voice to 1
soft-bit per channel-bit, i.e. hard decision.

The ATC-10B/C Source Code sample application (which provides a file
I/0 interface for the software vocoder) was used to decode the
compressed voice file. Cool Edit Pro 2.0 (a multi-track sound recording
and editing software program) was used to read the raw linear voice
data files and to play the decoded voice on the computer speakers.

TEST #2: C-SOURCE® VC-20

For the second test, the air traffic voice sample track was converted to
* DAT format using Cool Edit. This file was encoded by the ATC-10B/C
Source Code sample application.

A file format translation utility, BIT2VDF, was written © convert the
DVSI compressed wice file format (*.BIT) to the VDST compressed
voice file format (*.VDF).

HyperTerminal was used to play the file out the computer serial port to
the VDST host serial port. The VDST was configured to route the
compressed voice through the internal VC20 and to play the decoded
audio out the analog line interface. The audio was monitored using a
computer headset.

RESULTS: NIBBLE BIT ORDER INCOMPATIBILITY

The initial tests were completely unsuccessful. After some research
and trial bit stream rearranging, CIE discovered the bit streams needed
to flip the nibble bit order for the voice paths to work properly.

The VDST is compliant with the DO-224A standard which states:

Section 3.3.5.2.3: Vocoder Frame Bit Ordering. The 96 bits of the
vocoder frame shall be ordered as follows: For the DVSI VC-20 ATC-
10B implementation, the vocoder encoder frame shall consist of the
concatenation of 4bit words output from the vocoder board each
transmitted msb first. The VC-20 ATC-10B vocoder decoder frame
shall consist of the concatenation of twenty-four 4-bit words input to
the vocoder board each received msb first. For the VC-20 ATC-10B
implementation, the 4bit control bytes which precede each vocoder
frame shall not be considered part of the 96-bit vocoder frame.

The C Source Code bit order appears to be consistent with the
Department of Defense (DOD) Consortium Text Fixture (CTF)
compatible units submitted by DVSI for vocoder algorithm evaluation.

I _ W CIE anesmeonc
wn

Page 10

Figure 7 presents the differences between VC-20 bit order and the C
Source Code bit order.

/ Nibble #1 Nibble #2 Nibble #3 Nibble #24 \
AL AL AL AL

~ hd hd ™ "(N
DO-224A A3|A2|A1|A0|B3|52|B1|BU|c3[c2|c1|c0 // x3|x2|x1|x0

(First bit transmitted Last bit transmitted
I

96-bit vocoder frame —8 ————|

C-Source |A0|A2|A2|A3|BO|Bl|BZ|B3|COIC1|C2IC3|//lXOIX1|X2|X3I

- /

Figure 7. Bit Order Incompatibility. The DO-224A standard specifies MSB first transmission
of nibbles. While there is not a nibble interface for the C-Source code, the figure depicts the
relative bit order generated by the code. The nibble bit order is flipped.

The file format translation utilities, VDF2BIT and BIT2VDF, were
modified to compensate for the bit order problem. Once this was
accomplished, both voice paths worked properly. Given that DO-224A
is the standard, the source code interface will need to be modified to
comply with DO-224A.

U6 _ N CIE oneemene
AIRIGROUND 7

ACB-560 Page 11

Conclusions

CIE presents the following conclusions based on the testing and
evaluation conducted thus far:

ATC-10B/C Source Code Structure: The C source is
reasonably documented and well structured.

ATC-10B/C Source Code Portability: The C source code is not
directly compatible with the ADSP-2188M Compiler. The code uses
64-bit variable types that are not supported by the processor
(though the use of this variable type is limited to one source file).
The C source code is directly compatible with the Visual C++
Compiler (for Intel x86 platform).

ATC-10B/C Source Code Execution Time: The C source
cannot run in real-time on any reasonably powered embedded
processor platform. A Pentium processor running at an estimated
speed of 750-800MHz (or better) can run the C-source vocoder in
real-time.

ATC-10B/C Source Code Optimization: While the C source is
structured for translation to DSP assembly, many if not all of the
files would need to be translated (hand-optimized) to run on an
embedded processor. This would be an extremely time consuming
task.

ATC-10B/C Source Code Bit Stream Compatibility: The C
source bit stream order is not directly compatible with the VC-20.
After the bit order is rearranged, the C code is interoperable with
the VC-20.

CIE plans to continue testing and evaluation of the ATC-10B vocoder
source code.

Ié _ W CIE oneemen

AIR/GROUND

COMMUNICATIONS
ACB-560

Page 12

