

 This white paper has been prepared for the Federal Aviation Administration.
FA100-00101 White Paper (July 2003) – Rev 1.0 Page 1 of 12

FA100-00101
WHITE PAPER

ATC-10B Vocoder – Analyzing TI C54 Assembly Code Coverage
using TI C55 Code Composer Studio (CCS) Tools

This white paper explores the use of TI C55 Code Composer
Studio (CCS) tools to perform code coverage analysis for the
ATC-10B vocoder software, which is written entirely in TI C54
assembly.

INTRODUCTION

The ATC-10B voice compression algorithm, developed
by Digital Voice Systems, Inc (Westford, MA), is
specified by DO-224A for use in VDL Mode 3 air traffic
communication equipment. The software is distributed
by DVSI as a Texas Instruments’ TMS320C5416 object
library with accompanying header files, C54 assembly
source files, and documentation. For DO-178B Level C
software certification, a code coverage analysis must be
completed on the ATC10B software.

The FAA is presently working with three avionic vendors
to develop prototype VDL Mode 3 avionic radios. While
two of these vendors have selected the Texas
Instruments (TI) C54 platform for the vocoder
implementation, the remaining vendor has selected a TI
C55 platform. These two processor platforms are not
identical, but are closely related. TI has provided tools
that facilitate code porting from the C54 to the C55
platform. As a result of the vendor platform selections
and processor similarities, DVSI has provided a common
code set that can be built to run on either platform. This
code is provided as C54 assembly.

Although a number of structural analysis tools exist for C-
language software, a tool for native C54 assembly is not
commercially available. However, a C55 processor
family tool is available from TI that works with assembly
source files. This white paper explores the use of TI C55
Code Composer Studio Tools to perform code coverage
analysis on the ATC10B code.

CONTENTS
§ INTRODUCTION
§ CODE COVERAGE

REQUIREMENTS
§ PORTING SOFTWARE

(C54 to C55)
- Porting Overview

§ TEST TOOL OVERVIEW
- TI Code Composer Studio
- MASM55 Mnemonic

Assembler
- C5000 Analysis Toolkit

(with Code Coverage
Analysis)

§ ATC10B CODE
COVERAGE ANALYSIS
- Proposed Approach
- Requirements Compliance
- Benefits/Limitations

§ TEST TOOL
VERIFICATION

§ SUMMARY

ATC-10B Vocoder – Analyzing TI C54 Assembly Code Coverage

using TI C55 Code Composer Studio (CCS) Tools

 This whitepaper has been prepared for the Federal Aviation Administration.
FA100-00101 White Paper (July 2003) – Rev 1.0 Page 2 of 12

CODE COVERAGE REQUIREMENTS

The requirements for the code coverage tool are presented in Table 1. The FAA, in a recent
document aimed at acquiring or developing a C54 assembly language code coverage tool,
listed these requirements.

Table 1: Code Coverage Requirements

Requirement

1 Coverage Analysis. The tool shall analyze TMS320C54x assembly language
code for statement coverage against any given set of input test vectors.

2 Executed Statements. The tool shall identify, as executed all statements that did
execute as a result of the input test vectors.

3 Not-Executed Statements. The tool shall identify, as not executed, any
statements that did not execute as a result of the input test vectors.

4 Not-Evaluated Statements. Any statements, except source code comments, that
cannot be evaluated as executed or not executed shall be identified as not
evaluated.

5 Electronic Output. The tool output shall be in electronic form.

6 Output Listing Format. The tool output shall consist of annotated assembly
language listings, or equivalent, to allow direct correlation of coverage results to
the original assembly language source code.

7 Summary Information. The tool output shall summarize the total number of
statements in the source code, the number of statements determined to be
executed, the total number of statements not executed and the source files where
they are contained, the total number of statements that could not be evaluated,
and a list of all files that did not achieve 100% structural coverage. The tool shall
have a feature to provide this information on a file-by-file basis as well as a
feature to provide this information for the whole program.

PORTING SOFTWARE (C54 to C55)

The first (and most important) statement about porting the ATC10B C54 assembly to the C55
platform is that it already has been done and tested by DVSI and the C55 platform avionic
vendor. Thus, the toolsets and process are already (or soon will be) validated.
Notwithstanding, it is important for any system to properly integrate C54 source code on to a
C55 platform. For example, the C55 must be setup to enable C54 Compatibility Mode. These
integration issues must be addressed for the ATC10B code coverage test program.

The rest of this section provides background information for those who may not be familiar with
the processors and/or the porting process. It also touches upon some of the system related
integration requirements. For more information, see the list of reference documentation
provided at the end of this white paper.

ATC-10B Vocoder – Analyzing TI C54 Assembly Code Coverage

using TI C55 Code Composer Studio (CCS) Tools

 This whitepaper has been prepared for the Federal Aviation Administration.
FA100-00101 White Paper (July 2003) – Rev 1.0 Page 3 of 12

Porting Overview

The C54 and C55 platform processors are very similar. Texas Instruments designed the C55
platform was designed to support the migration and execution of C54 code. There are two key
elements that facilitate the porting of C54 code:

• Silicon Support: The C55 processor can be configured to run in C54 Compatibility
Mode. In this mode, the C55 mimics the operation of the C54 processor in executing
instructions. For example, the saturation methods used are compliant with the C54
processor. The native C55 saturation modes are slightly different. In addition, special
C54 bits in the C55 processor are enabled for use. The C16 bit, which covers either
single wide or dual short arithmetic, is an example of a C54 bit that is replicated on the
C55 platform.

• Tool Support: The MASM55 Mnemonic Assembler reads C54 and C55 assembly
source instructions to produce C55 executable output objects. The assembly source
languages are not identical, but very similar. For example, the C54 uses STx (store)
instructions while the C55 uses MOV (move) instructions to accomplish the same
objective. The C55 also includes an expanded register set, so there is a required
mapping of C54 register mnemonics to C55 register mnemonics. Fortunately, the
MASM55 tool automatically maps all of the C54 instructions to C55 instructions.

Texas Instruments provides a guide to assist with the migration of C54 code to the C55 platform
(see TMS320C54x-to-TMS320C55x Code Migration Reference Guide, SPRU429). While the
process is mostly automated, there are a few issues that must be addressed to insure the
resultant port is successful. For example, hard-coded program addresses and offsets should be
avoided in the C54 code, since the C54 processor uses word-based program addressing and
the C55 uses byte-based program addressing. Hard-coded addresses and offsets will not point
to the correct locations for code ported by the MASM55 assembler. In addition, system-related
code (like stack initialization, interrupt handling, and peripheral I/O access code) must be ported
outside of the MASM55 assembler. Figure 1 depicts the porting process flow.

ATC-10B Vocoder – Analyzing TI C54 Assembly Code Coverage

using TI C55 Code Composer Studio (CCS) Tools

 This whitepaper has been prepared for the Federal Aviation Administration.
FA100-00101 White Paper (July 2003) – Rev 1.0 Page 4 of 12

Figure 1: Porting Process Flowchart

Fortunately, DVSI has already completed the significant portion of the porting process (see
shaded areas of Figure 1). The ATC10B software consists of C-callable vocoder functions, but
does not contain any internal system related code. Thus, the step related to porting of system
level code is not applicable.

START

RUN MASM55 and FIX ERRORs

IDENTIFY/FIX NON-PORTABLE CODE
(e.g. hard coded addresses, references to
ARP register, C55 reserved symbols, etc)

PORT SYSTEM LEVEL CODE
(e.g. stack initialization, interrupt handling,

peripheral access, etc)

Use C54x_CALL/C54x_FAR_CALL
pragmas

C-Callable
C54 Assembly?

C54x COMPATIBILITY MODE
Insure C54x Compatibility Mode is enabled.

LINKER CONFIGURATION SETTINGS
(review object placement to insure near/far

model code is properly placed)

Optimize memory
or speed?

END

Reference SPRU429 for optimization
recommendations

Yes

No

Yes

No

 Steps already completed by DVSI for the ATC10B software

ATC-10B Vocoder – Analyzing TI C54 Assembly Code Coverage

using TI C55 Code Composer Studio (CCS) Tools

 This whitepaper has been prepared for the Federal Aviation Administration.
FA100-00101 White Paper (July 2003) – Rev 1.0 Page 5 of 12

TEST TOOL OVERVIEW

This section provides an overview of the TI C55 Code Composer Studio (CCS) tools including
the Integrated Development Environment (IDE), MASM55 Mnemonic Assembler, the C55
Simulator, and the Analysis Toolkit (performs code coverage analysis).

This section uses an example project, TST1, which includes ported C54 assembly code. The
example program does the following:

• Calls a native C55 assembly program (System_vInit) to insure that C54 Compatibility
Mode is enabled

• Calls two C54 assembly functions (TestAdd and TestFill)
• Calls C-Language functions that read computer input files, execute a binary search tree

(BST) algorithm, and print out results.

TI Code Composer Studio

Texas Instruments provides an Integrated Development Environment (IDE) called Code
Composer Studio (CCS) that allows developers to code, build, and test TI DSP software
programs.

The IDE is similar to other IDEs (like Microsoft Visual Studio) in that it supports the concept of a
project. Files can be added to the project, edited using a built-in editor, and subsequently
compiled, assembled and linked to create an operational executable. The built executable can
be tested using either a built-in simulator or using a real hardware target (facilitated with TI’s
Real Time Embedded Exchange toolset). The IDE supports single stepping, breakpoints, and
memory display/modification.

Figure 2 is a screen capture of CCS with the opened example project, TST1. Note: The
example project includes the file, TEST.ASM, which includes C54 assembly functions. The
bottom pane shows the printed output statements resulting from the execution of the test
program using the C55 simulator.

ATC-10B Vocoder – Analyzing TI C54 Assembly Code Coverage

using TI C55 Code Composer Studio (CCS) Tools

 This whitepaper has been prepared for the Federal Aviation Administration.
FA100-00101 White Paper (July 2003) – Rev 1.0 Page 6 of 12

Figure 2: TI Code Composer Studio (CCS) Screen Capture

ATC-10B Vocoder – Analyzing TI C54 Assembly Code Coverage

using TI C55 Code Composer Studio (CCS) Tools

 This whitepaper has been prepared for the Federal Aviation Administration.
FA100-00101 White Paper (July 2003) – Rev 1.0 Page 7 of 12

MASM55 Mnemonic Assembler

The MASM55 Mnemonic Assembler is automatically called by the CCS IDE when a C54
assembly source file is detected. Output listing files can be created that show the mapping of
C54 instructions to C55 instructions. Figure 3 shows a view of mixed source and assembly that
is available from within the CCS IDE after a project is built and loaded.

Figure 3: MASM55 Mnemonic Assembler (viewed from within IDE)

C5000 Analysis Toolkit (with Code Coverage Analysis)

The CCS Analysis Toolkit (for C55 and C6000 platforms only) includes Code Coverage
Analysis. The tool kit is not distributed with the CCS IDE, but is available as a free plug-in to
registered users of CCS. When installed, the tool captures and analyses information in the
trace buffers created by the C55 Simulator. It produces an Excel spreadsheet as well as
comma separated variable (CSV) text files for use with post processing tools. Figure 4 is a
screen shot of the SUMMARY worksheet created by the toolkit. The summary sheet has an
entry row for each file in the project. A column is provided listing the code coverage percentage
resulting from the simulated execution of the program. Clicking on the Function column entry
takes you to the applicable file worksheet. Figure 5 is a screen shot of a portion of the
TEST.ASM file worksheet. The executed code is shown in green. The not executed code is
shown in red.

C54 Assembly Source

C55 Address & Op Code

C55 Assembly Mnemonics

ATC-10B Vocoder – Analyzing TI C54 Assembly Code Coverage

using TI C55 Code Composer Studio (CCS) Tools

 This whitepaper has been prepared for the Federal Aviation Administration.
FA100-00101 White Paper (July 2003) – Rev 1.0 Page 8 of 12

Figure 4: Code Coverage Output (SUMMARY Worksheet)

Figure 5: Code Coverage Output (TEST.ASM Worksheet)

C54 Assembly Source

ATC-10B Vocoder – Analyzing TI C54 Assembly Code Coverage

using TI C55 Code Composer Studio (CCS) Tools

 This whitepaper has been prepared for the Federal Aviation Administration.
FA100-00101 White Paper (July 2003) – Rev 1.0 Page 9 of 12

ATC10B CODE COVERAGE ANALYSIS

Proposed Approach

The proposed approach for verifying ATC10B vocoder code coverage requires the creation of a
code test program (CTP) using the TI CCS IDE. The CTP will be written to input/output linear
voice (PCM) and/or compressed voice (CVM) test vector files and to execute the ATC10B
encoder/decoder software within the C55 simulator. The ATC10B C54 assembly source files
will be added directly to the C55 project. The IDE automatically calls the MASM55 assembler
for these files. In addition, the C55 simulator libraries support computer file input/output (IO)
operations.

The CTP will initially read an external control file that includes a line for enabling encoding
and/or decoding operations followed by a list of test input vector files. The generated voice
output files provide a means of verifying the test program system implementation by using the
bit exact properties of the algorithm.

To use the CTP, a user needs to have TI Code Composer Studio C5000 version 2.2 with the
Analysis Toolkit Plug-In. The user modifies the CTP control file using a text editor to run the
desired set of input vectors. Then, the user starts Code Composer Studio IDE, loads the CTP
program into the simulator and executes the CTP program. The TI Analysis Toolkit Plug-In
automatically generates an Excel spreadsheet listing the C54 assembly source files and code
coverage results.

The ATC10B source code uses macros in the assembly source. Since the source file uses the
macro, the code coverage tool lists the macro (and not the expanded assembly instruction list).
If desired, the C54 preprocessor can be executed to expand all macros. These expanded
assembly source files could then be added to C55 project to view code coverage within the
macro code.

Finally, the CTP program and associated ATC10B code could be modified within the IDE
simulated environment, if necessary, to stub out functions and force exception events to extend
code coverage beyond that exercised by the available PCM/CVM input voice vectors.

ATC-10B Vocoder – Analyzing TI C54 Assembly Code Coverage

using TI C55 Code Composer Studio (CCS) Tools

 This whitepaper has been prepared for the Federal Aviation Administration.
FA100-00101 White Paper (July 2003) – Rev 1.0 Page 10 of 12

Requirements Compliance

Use of TI CCS with the code test program fully meets the requirements identified by the FAA.

Table 2: Compliance with Requirements

Requirement Compliance Commentary

1 Coverage Analysis.
The tool shall analyze TMS320C54x assembly
language code for statement coverage against
any given set of input test vectors.

Compliant
The analysis toolkit automatically reviews the trace file(s)
generated by the simulation and analyzes code coverage.

2 Executed Statements.
The tool shall identify, as executed all statements
that did execute as a result of the input test
vectors.

Compliant
Executed statements are displayed in green along with
information about the number of times the statement was
executed.

3 Not-Executed Statements.
The tool shall identify, as not executed, any
statements that did not execute as a result of the
input test vectors.

Compliant
Not-Executed statements are displayed in red.

4 Not-Evaluated Statements.
Any statements, except source code comments,
that cannot be evaluated as executed or not
executed shall be identified as not evaluated.

Compliant
Not–Evaluated statements are displayed in black.

5 Electronic Output.
The tool output shall be in electronic form.

Compliant
An output Excel spreadsheet and corresponding set of
comma separated variable (CSV) files are automatically
generated documenting the test results.

6 Output Listing Format.
The tool output shall consist of annotated
assembly language listings, or equivalent, to
allow direct correlation of coverage results to the
original assembly language source code.

Compliant
The Excel spreadsheet includes a row for every line in the
source code. The C54 assembly source code statement
and the number of times executed are listed on the same
row.

7 Summary Information
The tool output shall summarize the total number
of statements in the source code, the number of
statements determined to be executed, the total
number of statements not executed and the
source files where they are contained, the total
number of statements that could not be
evaluated, and a list of all files that did not
achieve 100% structural coverage. The tool shall
have a feature to provide this information on a
file-by-file basis as well as a feature to provide
this information for the whole program.

Compliant
The Excel spreadsheet includes summary table listing each
source file and the code coverage percentage. Clicking on
a file automatically brings up the file details. While the total
number of statements executed, not-executed, and not
evaluated aren’t specifically listed by the analysis toolkit
output, this information can easily be derived from the
spreadsheet information. A post processing program can
be written to read in the CSV files to automatically generate
this information.

ATC-10B Vocoder – Analyzing TI C54 Assembly Code Coverage

using TI C55 Code Composer Studio (CCS) Tools

 This whitepaper has been prepared for the Federal Aviation Administration.
FA100-00101 White Paper (July 2003) – Rev 1.0 Page 11 of 12

Benefits/Limitations

Benefits Include:

• Base C55 Port Complete: DVSI has already reviewed the C54 assembly code and
removed/modified any problematic code associated with C54 to C55 porting. The
resultant code has already been tested on the C55 platform one of the avionic radio
vendors. Hence, all of the porting issues with the application code have already been
addressed. Note: The CTP still needs to address system integration issues.

• Commercial Tool Use: Given the TI C55 Code Composer Studio Tools are available as
commercial products with an established user base, there can already be a level of
confidence in the reported results. In addition, since the tool is already available, the
tool verification can be initiated immediately.

• Deterministic Rather Statistical Coverage: Since the analysis tool views the execution
trace buffer, all executed code is detected on a single run of the program. Statistical
methods that use interrupts to capture program counter states must be run over a period
of time. Further, there is no guarantee that all executed instructions will be captured by
the interrupting process.

• Completely Automated: The code coverage analysis tool is completed automated. One
or more input vector files can be processed and electronic output files are automatically
created.

• Source Code Instrumentation Not Required. Unlike other approaches, special
instrumentation code does not need to be compiled and linked with the target code.

Limitations include:

• Operating System and Peripheral Access Coverage: While application code is straight
forward to port, operating system and peripheral IO code may be difficult or impossible
to port from the C54 and/or test. Note: Other code coverage alternatives may also have
difficulty in achieving effective operating system and peripheral access coverage.
Fortunately, the ATC10B code does not utilize any system or peripheral access
instructions. This tool may be helpful for system-related C55 code (used by one avionic
radio vendor), but will be less applicable for testing system-related C54 code (used by
the other two vendors).

In addition, to the benefits and limitations described above, it should be noted that the TI C55
Code Composer Studio Toolset does have some reported bugs (see the TI website for more
information: www.ti.com). Fortunately, none of the bugs have appeared to hinder the initial
efforts associated with ATC10B code coverage analysis.

Note: Initial testing of the ATC10B files have already been successfully tested
(with a zero vector linear input buffer) for code coverage analysis using this
approach.

ATC-10B Vocoder – Analyzing TI C54 Assembly Code Coverage

using TI C55 Code Composer Studio (CCS) Tools

 This whitepaper has been prepared for the Federal Aviation Administration.
FA100-00101 White Paper (July 2003) – Rev 1.0 Page 12 of 12

TEST TOOL VERIFICATION

It is anticipated that verification of TI C55 Code Composer Studio Toolset may be easier to
accomplish (with a higher level of confidence) than verification of a tool created from scratch.
While tool verification is not necessarily a foregone conclusion, commercial use of the toolset
probably has likely resulted in the identification and correction any significant tool problems. In
addition, the MASM55 Mnemonic Assembler (part of the C55 Code Composer Studio Toolset)
will already need to be approved to support the certification efforts of the C55 platform avionic
vendor.

The additional tools that will require verification include:

• C55 Simulator
• C5000 Analysis Toolkit.
• Code Test Program (used to exercise the ATC10B code)

Given that the ATC10B algorithm is bit-exact, the CTP voice output files can be compared with
the other vocoder algorithm implementations to insure the code test program (CTP) has
properly integrated the ATC10B code.

SUMMARY

In summary, use of the TI C55 Code Composer Studio Tools should expedite ATC10B C54
assembly code coverage analysis. The simulated environment and detailed output listings will
facilitate identification of a suitable set test vectors and will support software unit level testing to
expand code coverage (if required). A copy of the Excel output file for the example project
(referenced in this paper) is available by email by sending a request to: kdevito@cie-eng.com.

For more information, reference the following documentation:

• Software Considerations in Airborne Systems and Equipment Certification (RTCA/DO-
178B), RTCA Incorporation

• TMS320C54x-to-TMS320C55x Code Migration Reference Guide (SPRU429), Texas
Instruments

• TMS320C55x Instruction Set Simulator Technical Overview (SPRU599), Texas
Instruments

• Analysis Toolkit for Code Composer Studio – v2.2 User’s Guide (SPRU623), Texas
Instruments

• Code Coverage and Multi-event Profiler User’s Guide (SPRU624), Texas Instruments

CIE Engineering, Inc.
600 Maryland Avenue, S.W.,
Suite 740
Washington, DC 20024
www.cie-eng.com
(202) 484-2298

